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Abstract

Executable biology presents new challenges to formal systems.
This paper addresses two problems that cell biologists face when
developing formally analyzable models.

First, we show how to automatically synthesize an in-silico
model for cell development given in-vivo experiments of how par-
ticular mutation experiments influence the cell fate. The problem of
synthesis under mutations is unique because mutation experiments
may have non-deterministic outcomes (presumably due to races be-
tween competing signaling pathways in the cells) and the synthe-
sized model must be able to replay all these outcomes or else the
model does not faithfully describe the desired cellular processes.
(In contrast, a "regular” concurrent program synthesized under a
permissive specification need not exhibit all allowed behaviors.)
We developed synthesis algorithms and synthesized a model of cell
fate determination in the development of earthworm C. elegans.
A former version of this model previously took systems biologists
months to develop.

Second, we address the problem of under-constrained specifica-
tions that arise due to missing mutation experiments which results
in multiple models explaining the same phenomenon. This corre-
sponds to analyzing the space of plausible models, i.e., models that
can be synthesized under given specifications. We develop algo-
rithms for exploring ambiguity in specifications, i.e., whether there
exist alternative models that would produce different fates on some
unperformed experiment. Using the algorithm, we show that for our
C. elegans case study, two observationally equivalent models with
same fates but with different protein interactions can be inferred.
One of these was previously unknown to biologists.

In addition to posing the synthesis and ambiguity testing prob-
lems and developing algorithms, we develop a modeling language
and embed it into Scala. We describe how this language design and
embedding allows us to build an efficient synthesizer.

1. Introduction

Diseases can be caused by perturbed gene and protein regulatory
networks. For example, disease X can be caused by a decrease of
protein P, which has negative regulatory control over protein R.
Once the level of P is decreased, high levels of R may cause dis-
ease X. Understanding regulatory function is an open question. One
way to learn about regulation of cellular processes is to use muta-
tion experiments, where cells are genetically modified to suppress
or enhance the activity of a certain protein, leading the cell to ex-
hibit abnormal behavior such as uncontrolled cell divisions. If, by
supressing protein P, the resulting phenotype can be attributed to,
say, an overexpression of a known protein R, we can infer from this
experiment that P negatively regulates R. From many such infer-
ences, experimental biologists deduce detailed maps of regulatory
networks that aim to describe the causal events leading to specific
cell fates and behaviors.

* This work was supported in part by NSF grant 1019343 to the Computing
Research Association for the CIFellows Project, and by NSF grant XXxxxxxx.

Experimental biologists worry about the correctness of their
models that are pieced together from a limited set of experiment
observations, to explain dynamically what is only observed end-
to-end. Executable biology [13, 14] addresses this concern. In this
field, a formal and executable model is built so that it can be veri-
fied, say with model checking, against observed experiments. Un-
fortunately, turning informal maps of regulatory network into exe-
cutable models is laborious because it involves explicitly defining
timing and strength of how multiple proteins regulate others. In our
previous work, some of us developed a model of VPC fate determi-
nation in the C. elegans worm [12]. This model correctly predicted
an unknown protein-protein interaction but it took us three month
to tweak the details of the model before it agreed with experiments.
When new experiments are added, or if the model extended with
new components, similarly expensive tweaks are required.

This paper develops techniques for synthesizing executable
models from observed experiments and prior biological knowl-
edge. Two challenges makes this synthesis problem an interest-
ing formal methods problem. First, the outcomes of some cellular
systems are nondeterministic. For example, in the C. elegans sys-
tem that we study, some mutations cause the six observed Vulval
Precursor Cells (VPCs) determine one of three alternative fates,
presumably due to races in the communication among cells. The
desired executable model must be able to reproduce all the ob-
served behavior to be faithful to the experimentally observed cell
phenomena. The choice of modeling language semantics is a non-
trivial decision. Stochastic modeling would allow alternative tran-
sitions in protein concentration, which in turn allows the system
to evolve into one of several states. Such systems are extremely
sensitive to the probability assignments, and such precise probabil-
ities are rarely known. Our modeling approach, on the other hand,
achieves non-determinism by perturbing the schedule under which
our (asynchronous) cells advance [15]. By using schedule inter-
leaving for non-determinism, we leave proteins as deterministic
functions. This in turn allowed us to makes it easier to synthesize
the crucial protein functions.

Second, the mutation experiments form a partial specification
and therefore are challenging to synthesize from. Because only cer-
tain genes are mutated from the total combinatorial set of possible
mutations, biologists cannot be certain that a executable model ver-
ified against these mutations, synthesized or manually constructed,
is the sole explanation of the cellular regulatory process. There
could exist an alternative model that is observationally identical
on the current ambiguous specification but observationally distinct
on an additional mutation.

Therefore we go beyond synthesis and develop methods for the
analysis of the space of plausible models, i.e., models that agree
with the current partial specification. If observationally distinct
models exist, we need to suggest a new mutation that differenti-
ates them. On the other hand, if no alternative models exist, we
want to determine what is the smallest set of experiments that rules
out these models. Finding such a minimal set is interesting be-
cause, should biologists decide to redo the experiments for vali-
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dation, it will suffice to validate the mutation experiments that suf-
ficiently constrain the plausible models. Finally, it is interesting to
ask whether there are observationally identicla but internally differ-
ent models. Such models present alternative regulatory networks.
These models cannot be distinguished by observing phenotypes;
we must instrument proteins with fluorescent markers (similar to
tracing the program) and observe the cell during its development.
This is a harder experiment but formal methods here help in identi-
fying which genes to mark, reducing the cost of instrumentation.
These observations lead to the following domain characteristics:

1. System specification will be a small finite set of input-output
examples.

2. Non-deterministic outcomes are allowed, and when present re-
quired to be exhibited. Models are terminating and produce the
stated outcomes within bounded time.

3. The model will be structured hierarchically, as shown in Fig-
ure 2. Cells follows a bounded asynchrony execution model.

We have built an efficient verifier, synthesizer and a specifica-
tion ambiguity analyzer that all exploit the above characteristics.
Our synthesizer takes as input the mutation results and a template
structure of the cells, and from it generates a validated model. The
template of the cell defines the contained components, and their in-
terconnections (inhibition, activation). These are well-known from
the biological literature. Additionally, the concentration levels on
the connections are known, which are discretized. What is not
known is the internal logic and timing of the components, i.e., when
they trigger and under what conditions of the incoming signals. Our
synthesizer generates exactly these, off-loading the most difficult
task of systems biology modeling to a computation search engine.

This paper makes the following contributions:

1. We formulate the model synthesis problem and observe that
unlike previous synthesis tasks, e.g., concurrent synthesis [21]
or synthesis from examples [16] or invariants [23], which were
2QBF, this problem is 3QBF. We develop efficient algorithms
for solving this problem that boil down to three communicating
SAT solvers.

2. Analyzing the specifications and the space of plausible mod-
els: We developed algorithms for determining whether inter-
nally or externally distinguishable models exist. These build on
our 3QBF synthesis solution. These could guide new wet-lab
experiments. Our tool already suggests a new experiment that
could potentially lead to a new biological discovery.

3. We designed a programming language for expressing our mod-
els based on bounded asynchrony [15]. We embed this domain-
specific language into Scala and built a lightweight synthesizer,
which is publicly available. We describe how to build such syn-
thesizers.

4. Our synthesizer efficiently (1) generates valid models for the
C. elegans VPCs. The model is readable and also fixes a bug
in previous modeling—incorrect modeling of a mutation; (2)
shows that no behaviorally distinct models exist (even after ex-
panding the mutation space), but two internally different models
were synthesized; (3) prunes to the specification to the minimal
set of 4 mutation experiments.

2. Technical Overview

This section illustrates synthesis of programs under design consid-
erations of executable biology. We formalize mutation experiments,
describe the programming language that we use to construct the bi-
ological model, outline our synthesis algorithms, and describe the
queries for analyzing the space of plausible models.

2.1 Background on Mutation Experiments.

Here we give a brief background on mutation experiments in devel-
opmental systems biology. The role of these experiments is to un-
derstand cellular genetic regulatory networks, including those that
control stem cell differentiation. The regulatory networks are of in-
terest in part because their failure may trigger disease:

Cancer is fundamentally a disease of failure of regulation
of tissue growth. In order for a normal cell to transform
into a cancer cell, the genes which regulate cell growth and
differentiation must be altered. (Wikipedia)

Hence, to understand cancer, one needs to understand cell differen-
tiation. There are two common mechanisms for cell differentiation:
(1) the cell divides into cells of different type, e.g., based on the
gradient of a “broadcast” signal from an anchor cell; (ii) multiple
identical cells differentiate by mutually communicating in order to
arrive at coordinated fates. Therefore, to understand cell differenti-
ation, one needs to understand inter-cell communication.

Developmental systems biologists seek to infer the program that
stem cells “execute” to decide their fate. This program executes in
a single division cycle during which a pluripotent cells decided its
fate, potentially by communicating with other cells. One method
for inferring this program is to mutate the cell and observe the re-
sulting changes in the cell development. These experiments are par-
ticularly attractive because phenotype changes are visually observ-
able, avoiding the need for the more expensive tracing of temporal
protein levels by tagging cell proteins with fluorescent genes.

From gene mutation experiments, biologists infer protein inter-
actions. For example, Yoo et al. infers:

In this assay, depletion of Ist-2, Ist-3, Ist-4, or dpy-23, as
well as ark-1, caused ectopic vulval induction, suggest-
ing that they function as negative regulators of the EGFR-
MAPK pathway. [25]

From such piecemeal information, biologists create informal mod-
els of cellular programs, such as the one in Figure 1 from [12],
which show how five cells—an anchor cell (AC), three vulval pre-
cursor cells (VPC), as well as the hyp7 cell—communicate to de-
termine the fate of the VPCs. The edges between cell components
(receptors and proteins) show the activation (—) vs. suppression

(.

lin-15 hyp7

Figure 1. An informal C. elegans connection diagram of three
VPC cells [12]. These cells react to the inductive signal (IS) from
the anchor cell and communicate using the lateral signal (LS)
among themselves.

While these informal models may capture all known interac-
tions among cell components, they do not describe the dynamics
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of the cell, such as what race conditions permit the cells to take
non-deterministic that have been outcomes under some mutations.
Due to this lack of dynamic information, one cannot be certain that
these diagrams contain all protein interactions exercised by the cell.

The goal of executable biology [13] is to create models that can
be verified against observed experiments. Mechanical verification
allows tackling the combinatorial complexity of races in inter-cell
communication.

A challenge in executable biology is in creating a model. To
transform the informal model in Figure 1 into an executable model,
the designer must model at least (i) protein levels; (ii) timing or
rates at which proteins react to other components; and (iii) how
a protein behaves when both an activator and an suppressor of
the protein are active. We have previously developed a verified
model of C. elegans VPC cells; that model took three months to
develop [15]. This paper develops method for automatic synthesis
of executable models.

2.2 Program Inference from Mutation Experiments

We model cell mutation with an adversary who perturbs the cell
program such that a set of adversary-selected cell components
receive adversary-supplied semantics. Typically, a cell component
is mutated either to be suppressed or to stay at a high concentration
level throughout the execution of the program, although we support
other mutation types.

The set of mutation experiments performed in the lab serve as
our correctness specification. Let F be the set of possible outcomes
of a mutation experiment. For example, if a cell can take one
of three fates, the outcomes of an experiment with six cells is
a six-tuple from F' = {1,2,3}°. Let M be the set of possible
mutations that one can apply on a cell; typically, all cells involved
in an experiment are mutated identically. With n cell components
and three possible mutations per component (e.g., no mutation;
suppressed; high level), M is exponential in the size of the cell.
As a result, biologists do not carry out all mutations.

Incomplete experiments imply that we have to accommodate
partial specifications. Technically, the set of experiments Exp C
M x F, where (m, f) € Exp if the fate f has been observed
on the mutation m. To facilitate synthesis with both positive and
negative examples, we (reasonably) assume that once a mutation
has been carried out, the lab has observed all possible outcomes for
this mutation by repeating the experiment a sufficient number of
times. Without this assumption, we would have no upper bound on
the specification, as any (m, f) pair could potentially be observed
in future experiments. To model such full knowledge for a single
mutation, our specification is a (partial) map E : M — 2F.
The domain of E is the set of performed mutations. If m €
dom(E) A f ¢ E(m), we assume that mutation m cannot result
in fate f; the pair (m, f) is a negative example. We say that a
program P : M — F'is a correct model of E if, for each
m € dom(E), the execution P(m) may produce each element
of E(m) by controlling some aspect of the execution of P. We
will adapt this correctness condition for our modeling approach
in the next subsection, which explain that we control P through
a schedule.

2.3 Our Modeling Approach and the Modeling Language

A correct model must reproduce all nondeterministic outcomes
E(m) of an experiment with a mutation m. Usually, a model is not
designed to produce the alternative outcomes in a single execution.
Instead, the model includes some form of non-determinism so that
the set of possible model executions covers the experimental obser-
vations E(m). In stochastic models [3, 19], this non-determinism
takes the form of proteins models making probabilistic transitions,
accounting for variability of protein level change rates in nature.

Our modeling approach moves non-determinism from protein mod-
eling into the scheduler that controls the execution of our concur-
rent models [15]. This shift allows our protein models to be deter-
ministic, which we believe simplifies protein model synthesis.

Our modeling language is not fully asynchronous because cells
in nature evolve at similar rates. Therefore, our schedules adhere
to a I-bounded asynchrony constraint, which divides the schedule
into blocks such that in each block, each cell takes exactly one step.
As a corollary, between two executions of a cell, no other cell can
take more than two steps [15].

We have materialized our bounded-asynchrony programming
model in a high-level programming language inspired by biological
diagrams of Figure 1. The language introduces programming ab-
stractions for cells, cell components, and interaction between com-
ponents. Thanks to these abstractions, our programs are syntacti-
cally smaller, which makes their synthesis very efficient, compared
to models expressed in the Reactive Modules language [2], which
was the modeling language used in [12].

Correctness Condition. Programs in our language have the form
P :(M,S) — F, where M and F are domains of configurations
(mutations) and fates, while S is the set of bounded-asynchrony
schedules. The explicit schedule allows us to formulate a precise
correctness condition correct(P, E) of amodel P on a specifica-
tion E : M — 2F which has two parts:

1. demonic scheduling: A demonic scheduler cannot make the

model produce fate that is outside the specification, i.e., demonic(P)

Vm € dom(E).Vs € S : P(m,s) € E(m).

2. angelic scheduling: An angelic scheduler must be able to pro-
duce each fate in the specification, i.e., angelic(P) = Vm €
dom(E)Vf € E(m)3s€ S: P(m,s) = f.

The demonic requirement asks that the model is an underapproxi-
mation of the specification, while the angelic requirement asks that
the model overapproximation. Our models are precise in that they
meet both conditions.

Programs in our language (cf. Figure 2) are composed of
cells, which execute according to a schedule s. The schedule is
of bounded fixed length; the number of steps corresponds to the
desired discretization of the cell division cycle. Multiple cells can
take simultaneous steps. Cells are composed of components, which
model proteins or cell receptors. Components communicate with
components in the same cell or in other cells; communicating
components are connected with directed edges, which correspond
either to activation or suppression relationships. Components of
a cell execute synchronously; all take one step when the cell is
scheduled. Components have state—a discretized concentration—
usually modeled at 2-5 levels. When the component executes, it
updates its next state based on its current state and the states of
its activators or suppressors. Each component is modeled with an
update function (L, L¥) — L, where L are levels and k is the
number of components activators and suppressors, combined.

2.4 An Example

In an attempt to make the description of our problem more accessi-
ble, we have translated our running example from a problem of cell
model inference to a problem of designing a toy distributed proto-
col. Turning an inference into design means that our specifications
are not observed laboratory experiments but rather human-provided
desired outcomes of the system under design, which is an insignif-
icant change in our setting.

The goal. We wish to design a weak consensus protocol for a three-
cell system, where each cell is a node in a distributed system. (This
protocol is inspired by communication between biological cells.)
Two cells (called sensors N1 and N2) are listening to a signal from
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Figure 2. Hierarchical organization of concurrent system.

a master cell (a base station BS). When the base station sends a
signal, at least one of the sensors must make a decision to take
a measurement. When a sensor takes a measurement, it sends a
release message to the other sensor permitting the other sensor not
to take a measurement in order to save its power. The decision to
make a measurement is made on the basis of (i) the strength from
the base station; in normal conditions, the sensor that received the
stronger signal should take measurement as it is closer to the base
station; and (ii) receiving the release message from the other signal.
To complicate the situation, the communication between the two
sensors may be down due to power saving, and so sensors cannot
rely on receiving a message from their peer. To help matters, we
can assume that sensors have bounded skew, i.e., they run under
bounded asynchrony schedule.

The specification, expressed as a set of experiments, is shown in
Figure 3(b). The left column shows the mutations (configurations)
M, while the right column shows the desired outcomes F'. It is in-
teresting to note that we are using the mutations as the environment
adversary; the mutations describe situations under which the nodes
N1 and N2 must operate according to the expected outcomes. For
example, the last row describes the situation in which the signal ar-
riving at N1 is high, while the signal arriving at N2 is low, and the
communication between nodes is turned off. We can think of this
mutation as the adversary lowering the signal to N2 and turning off
the radio between the two sensor nodes. The outcome C' means that
anode has committed to taking a measurement while DD means that
the measurement was delegated to the peer node.

Figure 3(a) shows the program. On the left is the top-most
level with three cells; in the middle is a sensor node showing its
components (if this node was a cell, the components would be
proteins). The 77 blocks on the right show the unspecified update
function that we are asking the synthesizer to compute.

2.5 Synthesis

The input to the synthesizer is the specification £ and a partial
program P? that is completed by the synthesizer, if possible, into a
program P" such that correct(P", E). A partial program is a pro-
gram template in which certain fragments are parameterized and
need to be supplied by the synthesizer. Our language allows pa-
rameterization of the update functions that model cell components.
Because update functions model timing and change rates of pro-
teins, they are the hardest part of the model to produce manually.
By parameterizing update functions, we can indirectly leave un-
specified also the connections between components: for example,
if a biologist is unsure whether a protein P is suppressed by a pro-
tein Q or a protein R, both Q and R can be connected to P; if Q
turns out not to influence P, the synthesizer is able to produce an
update function for P that disregards the state of Q.

From the user standpoint, the partial program P’ encodes bio-
logical assumptions because it defines the components in the cells
as well as a superset of connections between them. It thus (i) con-
veys the desire to model particular proteins and (ii) states the
knowledge of which (superset of) pairs of proteins communicate.
These assumptions form the basis for the ambiguity analysis de-
scribed in Section 2.6.

Our synthesis problem is to find update functions h that yield a
correct model:

3h : demonic(P") A angelic(P")

This synthesis problem is harder than that for other concurrent sys-
tems [21] because a model must reproduce all observed experi-
ments, captured in the angelic(P) correctness condition, which is
a 2QBF formula. This makes the synthesis problem a 3QBF prob-
lem. Typical synthesis problems are 2QBF.

We develop an algorithm for the 3QBF synthesis problem with
a two-part counterexample-guided inductive synthesis (CEGIS) al-
gorithm. (An inductive synthesizer produces a program that is cor-
rect on a small sample of inputs; this candidate program is then
verified on remaining inputs.) Compared to the classical CEGIS al-
gorithm, where an inductive synthesizer communicates with a ver-
ifier [22], the two-part CEGIS algorithm communicates with two
verifiers, one for each of the two correctness conditions, and col-
lects two kinds of counterexamples, one from each verifier. From
the demonic verifier, our algorithm collects an input-schedule pair
(mg, s;), while from the angelic verifier it collects input-output
pairs (my, f;). By collecting these counterexample, the two-part
CEGIS algorithm decomposes the 3QBF problem into two 1QBF
(i.e., SAT) solvers (inductive synthesizer and the demonic verifier)
and one 2QBF solver (the angelic verifier). The inductive synthe-
sizer produces a candidate model that is correct on all counterex-
amples and sends this model to both verifiers. If both approve
the model, the synthesis successfully terminates. If either fails,
counterexamples are produced, refining the correctness constraints
placed on the inductive synthesizer, making it eventually produce a
correct model (or conclude that no model exists in the model space
described by P).

Example 2. The partial program P for the desired weak consen-
sus is shown in Figure 3(a). We wish to synthesize update functions
for the receivers and the delay components. These update functions
control how these components react to signals from the base sta-
tion and the peer sensor. The synthesized functions from our tool
are shown in Figure 4. The synthesizer takes four seconds to gen-
erate these update functions. Intuitively, a sensor’s protocol is sim-
ple: if you receive a weak signal, wait a little while and wait for
the release signal from the other sensor. If it does not arrive, take
a measurement. Still, even for this simple protocol, designing the
update functions is not trivial.

2.6 Ambiguity Analysis

Assume that a biologist produces an executable model that verifies
against all performed experiments. Now imagine that after he pub-
lishes his conclusions from this model, another biologist performs
a new mutation experiment whose outcome invalidates the model
as well as the conclusions drawn from it. (A model P becomes
invalid under a new experiment (m,+1, fi) if P(mpy1,8) # fi
for all schedules s.) Naturally, we are interested in the question of
whether one can ascertain the validity of a model in the absence of
complete experiments. In particular, under what assumptions can
a model be considered the sole explanation of biological phenom-
ena?

We view this question as analysis of ambiguity in the specifica-
tion E. First, we define aggregate outcomes and ambiguity:
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DEFINITION 1 (Aggregate outcome). Let P be a model and m an
input configuration. Then the aggregate outcome of P on m, de-
noted P[[m]], is the set of outcomes over all schedules: P[[m]] =

{P(m,s) | Vs e S}

A specification E' is ambiguous under biological assumptions ex-
pressed in a partial programs P? if we can find two models that
disagree on some new experiment. Of course, one of these models
would become invalid given the new experiment.

DEFINITION 2 (Specification ambiguity). Given a partial pro-
gram P°, a specification E is ambiguous, denoted Amb(E, P"),
if 3Im € M 3hi,ha : correct(P" E) A correct(P"2, E) A
P"[[m]] # P"2[[m]].

Note that mm must be a new experiment, i.e., m € M \ dom(E).
In our case study, we show that the specification E is unambigu-
ous given provided biological assumptions (i.e., , there is no need
for more experiments at the desired level of modeling). We have
also shown that removing some historically important experiments
indeed makes the specification ambiguous, permitting alternative
explanations for how cells coordinate.

We develop an algorithm for the alternative model query that,
given an existing (perhaps previously synthesized) model P and
a partial program P” stating biological assumptions, finds an input
configuration mm and a new model P" such that P[[m]] # P"[[m]],
or shows that no such h and m exist.

Now consider a research scenario where one wants to validate a
set of experiments performed in the literature. Is it possible to iden-
tify the smallest set of experiments whose replication is sufficient
to yield a non-ambiguous specification? We support a minimization
query that computes a minimal non-ambiguous specification F,,,
i.e., ~Amb(Em, P') N=3E', E' C Ep A=Amb(E’, P?). (This
query is defined when E is non-ambiguous, of course.)

In our case study, we should that, under our assumptions P°,
one does not need to replicate about 90% of experiments. This
result suggests that computing which experiments to perform might
reduce unnecessary laboratory work.

Example 3. We examined the example in Section 2.4 using our
query for alternative models. Supposing we relaxed the specifica-
tion and did not care about the outcome on the case N1 = L,
N2 = L. We ask our synthesizer to generate models under this
relaxed specification with the output from the example in 2.4 as
the model to differentiate against. Our synthesizer generates an al-
ternative model that has much simpler behavior (as it need not be
non-deterministic under the row that we ignored). The update func-
tions are shown in Figure 4(a’,b’,c’). When we ask for a mutation
that distinguishes among the models, the synthesizer produces the
omitted row.

We have also explored the minimization query. Our synthesizer
prunes E down to the first three rows of Figure 3(b) as a mini-
mally ambiguous specification. This is somewhat surprising but it
gives substantial insight into the problem, as the user can now un-
derstand that the specification of the three transmit OFF cases was
redundant, while the user may have presumed that it was necessary.
More importantly, the minimization demonstrates that even though
redundant rows were present, the specification was at least consis-
tent, which may be useful diagnostics.

3. Language

In this section, we present the formal semantics of our language, by
first defining the language constructs, and then giving operational
semantics rules for execution.

The basic construct in our language is a component. In the
context of biological models, a component may represent genes

or proteins in a living cell. We denote the set of all components
in a program by C'omp. Components are connected via a set of
directed edges Edges : Comp x Comp. Edges model channels
of communication between cell components. For each component
¢, we say a component ¢’ is an input component if there is an
edge (¢',c) € Fdges. For each ¢, we define the set of input
components Input. as {c¢' : (¢/,¢) € Edges}. A component c
is associated with a state o. that takes values from a finite domain
L. In biology, the component state corresponds to a discretized
activation/concentration level of a component. Each component ¢
is also associated with an update function, denoted f., that updates
its state o.. The function f. has domain L. X I/ ¢crnput, Lo and
range L.. In biology, these update functions model the behavior
of proteins based on their own activation level and the level of
other components that influence them. The update function for a
component is chosen from within a sequence of functions Fi, :=
[fe1s- - fe,r], that describe possible alternative behaviors of that
component under different mutations, i.e., the natural and altered
behaviors of the component.

A cell is a set of components. In biology, this corresponds to an
actual cell that contains biological components. Within a cell, we
have a synchronous execution model, i.e. all components of a cell
update their state simultaneously using their update function. The
state of a cell & is defined as the set of states of the components
that the cell contains. We denote the set of all cells in a program
by Cells. Cells forms a partition on all the components in the
program. A pair of cells (cell1, cell2) are said to be communicating
if there exists a pair of components (comp1, compz) connected by
an edge in the respective cells.

The pair (Cells, Edges) constitutes a program. The program
state & is the set of all cell states in the program. The input to
a program is a configuration. A configuration is a function from
components to integers, that expresses for each component c the
index of the function in F that should be used as the update func-
tion f. in the execution of the program on this input configuration.
The output of a program is defined as the state of user-designated
components in the final state reached in an execution.

Partial Programs. The sequence F. of functions associated with
component ¢ need not be specified concretely. When at least one
component function is not concretely specified, we say the program
is partial. Typically, users will only concretely specify the behav-
iors under very well understood mutations that would not make
sense to redefine. For example, a typical example in the biological
case is the knock-out mutation which subdues the function of the
component and fixes it to the OFF state.

EXAMPLE 1. For the example in Section 2.4 the user declares two
different types of Cells. One the BS, and another for NI and N2.
In the BS they declare a component Base Node, and for NI, N2
they declare components Base Receiver, Laternal Emit, Lateral Re-
ceiver, Delay, and Decision. They leave the update functions for
Base Receiver, Lateral Receiver, and Delay undefined as they con-
tain the complex behavior. The remaining Lateral Emit, Decision,
and Base Node are trivial functions that either relay, or reach con-
stant values. They also specify the connections as indicated in Fig-
ure 3(a).

Operational semantics Figure 5 shows the small-step semantic
rules for the execution of the program. Here, we assume that the
program starts in the initial state G;n;¢, and that the program has
already been preprocessed by fixing a particular update function
for each component according to the input configuration. The se-
mantics are defined recursing down the structure of the system.
The schedule .S, with a schedule step s, partitions the cells to the
set enabled (for whom s(cell) = 1) and disabled (for whom
s(cell) = 0). For the disabled cells the state remains unchanged.
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Figure 3. (a) Template of connections in distributed system. The top node is the base station, and the bottom nodes are distributed sensors
whose transmit radios might be switched off leading to no horizontal communication links. (b) The specification giving required outcomes
for nodes N1 and N2 under a range of Scenarios of base station trigger signals and cases of transmit radio on the ode being ON or OFF. C =
Commit, D = Delegate.
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Figure 4. Output of the synthesizer, i.e., graphical representations of the update functions, for the example in Section 2.4 for the unknown
components. Also shown is the update function for the alternative model generated using Q3 to differentiate from the previous model under
ambiguous specification, i.e., removing row 2 of Figure 3(b).
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Figure 5. Small-step semantics for system execution. RUN-SYSTEM runs a schedule by advancing the cells according to each microstep in
the schedule. ADVANCE-CELLS rule updates the states of cells, depending on the current microstep s. If a cell is enabled, it is advanced by
applying the CELL-ENABLED rule. Conversely, if a cell is disabled, the CELL-DISABLED rule keeps its state unchanged. ADVANCE-NODE
rule updates the state of a component by invoking the update function on the states of all input component states and its own state
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For the enabled cells, each component is advanced by reading the
relevant neighbors and stepping based on the update functions.

Bounded Asynchrony. The concurrency notion that our execu-
tion model admits is bounded asynchrony. This model faithfully
represents biological systems where complete synchrony is too
strict, and complete asynchrony does not accurately model cells
that progress at similar but not identical rates.

Fisher et al. [15] define bounded asynchrony with schedules
consisting of micro- and macro-steps. Each micro-step consists of a
subset of the components stepping synchronously. This is what we
have been calling a schedule upto this point. Next we block micro-
steps together into a macro-step. Each k-bounded macro-step con-
sists of all components taking k steps split across multiple micro-
steps. For example, let us consider three nodes and the schedule
110 (micro-step) indicates the first two take a step while the third
waits. Suppose the second schedule is the micro-step 001. Then the
two micro-steps together make a macro-step in which all nodes take
one step and is therefore 1-bounded.

Schedules over micro-steps are much more expensive to enu-
merate than schedules over macro-steps, especially 1-bounded
macro-steps. Schedules over 1-bounded macro-steps (where each
node necessarily moves once), can be succintly encoded without
loss of information as pairwise happens-before between connected
nodes. That is, a 1-bounded macro-schedule is an assignment of <,
>, or = to each edge in the node topology'. The following lemma
holds:

LEMMA 1 (Fisher et al. [15]). A micro-schedule exists iff a realiz-
able macro-schedule exists over the node topology.

Here a realizable macro-schedule is one that does not cause an in-
consistent ordering of nodes in a cycle. We use this result critically
to efficiently encode partial programs as formulas (Section 4), and
restrict schedules to be 1-bounded.

Using macro-steps allows us to define a compact symbolic en-
coding of our programs into formulas, which would have been in-
tractable with micro-steps.

4. Translating Programs into Formulas

We now describe how to translate a program (Cells, Edges) to
a SMT formula which enables various verification and synthesis
algorithms. We first give rewrite rules that translate the concrete
execution of the program to a symbolic execution. We then describe
additional constraints that encode biological domain knowledge to
be used in synthesis of programs.

4.1 Translation of Program Execution

The translated SMT formula for the partial program (Cells, Edges)
is parameterized by the following symbolic variables:

e For each time step ¢ and each pair of connected cells (c1, ¢2),
we define a channel configuration variable channel; c, ., that
can hold one of the three values “<”, “>" and “=". Channel
variables channeli ¢, ¢, and channel; .21 are asserted to be
consistent in the following way:

channels ci,co0 = “>” < channel; co,c1 = “<”
AN

channels ci,co0 = “<” < channel;ca,c1 = “>”
A

channels ci,co0 = “=" < channel; co,c1 = “="

e For each component ¢, we represent each function f; € F as a
lookup table with symbolic values for each value in its domain

! Technically, for micro-steps it is the sequence of ordered bell numbers or
Fubini numbers [1], while for 1-bounded macro-steps it is 3™ edges

L x11er e rnput, Ler - Entries of the lookup table are represented
by the variables table,,, .,ve,, that take values in L.

Veq s

e For each component ¢, we represent its mutation symbolically
as a variable m., that encodes the index of the function to use
among F¢. If m. has value i, then the function f. ; will be used
as the update function of component c.

e For each component ¢ at each execution step, we create a
variable o¢ . that takes values in the domain of L.. These
variables represent the component state symbolically over the
execution of the program.

Translation rules for compiling the program (Cells, Edges) to
a SMT formula are shown in Figure 6.

4.2 Domain-Specific Constraints on Update Functions

The translation above does not impose any restrictions on the struc-
ture of the update functions that are left unspecified by the user. In
biology, formulating a hypothesis typically involves stating high-
level invariants about whether a component activates or inhibits
another one. We found that asserting constraints that encode these
invariants based on user annotations on components and edges be-
tween them is crucial for ensuring that the structure of update func-
tions agree with the invariants. In the following, we describe two
kinds of invariants that encode monotonicity properties on update
functions.

When modeling biological systems, component states typically
encode chemical concentrations, and for a such component c, the
values L. can be annotated to have a total order < over them.

We define a partial function label from Edges to the set
{activating, inhibiting}, that annotates edges in a program P’
as either activating or inhibiting. Intuitively, if there is an activating
edge from component c¢; to component ¢z, then an increase in o,
should not have the effect of decreasing o.,. Conversely, if ¢; and
c2 are connected through an inhibiting edge, then a decrease in the
value of o, should not result by itself in the decrease of o, .

Given a component ¢ with update function f. : L. X L., X

. X L, — L., we define the partial order < on elements of
L¢, X ... X L, in the following way:

(V1,0 yvn) 2 (U1, .., Un)
= Vie{l,...,n}
(label((ci, €)) = activating A v < u;)V
(label((cs, ¢)) = inhibiting A v; > u;)

Intuitively, < is a partial order on the strength of the input values
to a component. We use this partial order to assert two types of
constraints on the structure of the update function f.. The first one
encodes that, given a value of o, a stronger value of the input will
not have the effect of decreasing the value of o, i.e., the updates
through f. should be corresponding higher:

Vil,ig S Lcl X ... X Lcn. Vv € Le.
11 N2 = fe(v,i1) < fe(v,i2)
The second constraint that we assert imposes a monotonicity con-
straint on f. in terms of the value of o.. This property expresses
that, for the same input value, the greater the activation level of the
component is, the greater the updated value will be:
Vi € Lc1 X ... X Lcn.vm,vg € L.
v1 vz = fe(vi,8) < fe(v2,9)

5. Synthesis and Querying Spaces of Models

In this section, we present algorithms for synthesizing models from
partial programs, as well as querying spaces of these models for
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Figure 6. Translation rules for symbolic execution of programs.

ambiguity analysis of specifications. The algorithms we describe
leverage the translation to formulas presented in Section 4.

In the translated execution of a program, holes, schedules and
input configurations are symbolic. The space for holes and the
space for schedules are typically very large. However, specifica-
tions are typically wet lab experiments which are sparse and inher-
ently small (O(10?)). This enables efficient solving algorithms that
unroll quantifications of configuration inputs over specifications.

In the following, we refer to the symbolic output parameter of
translating the run of program P with input m and schedule s as
P(m, s), and to the specification as the partial function E.

5.1 Verifying Programs
The correctness condition, presented in Section 2, is defined as:
correct(P) = demonic(P) N angelic(P)

The properties demonic(P) and angelic(P) are in 1QBF and
2QBF respectively. As a result, the correctness condition correct(P)
is in 2QBF.

We verify correctness conditions demonic(P) and angelic(P)
separately, using a verifier Vy for demonic schedules for the first,
and a verifier V, for angelic schedules for the second.

Verifying for demonic schedules. The formula demonic(P)
states that the set F/(m) is an upper bound for all observed out-
puts of P with input m:

demonic(P) =Vm € dom(E).Vs € S. P(m,s) € E(m)

To check this property, we attempt to disprove it by searching
for a demonic schedule that produces an unobserved output for
an input in the domain of E. Given the observation that there
is a small set of input values in the domain of E, we solve this
formula by unrolling the existential quantification over this set, and
querying symbolically for a demonic schedule. The containment
P(m,s) ¢ E(m) is expressed by unrolling for values in E(m),
which is also a small set. We thus solve the 1QBF formula:

\/ Js. /\ P(m,s) # f

meEdom(E) fEE(m)

If this formula is satisfiable, P does not satisfy demonic, and
we obtain a concrete counterexample (m, s) such that running P
on input m and schedule s leads to an unobserved fate. If it is
unsatisfiable, then P is correct with respect to demonic.

Verifying for angelic schedules. The angelic condition states
that all outputs in the set that m maps to must be observable, i.e.
appear in some execution of P on m:

angelic(P) =Vm € dom(E), f € E(m).3s. P(m,s) = f

This amounts to searching for an angelic schedule for each f €
E(m). We reduce the 2QBF correctness property to an efficiently
solvable 1QBF by unrolling values of the domain dom(FE), again
based on the assumption that this domain is small. We perform un-
rolling by formulating the following query for each m € dom(E)
and for each f € E(m):

3s. P(m,s) = f

If the above formula is unsatisfiable for some m and f, then no
angelic schedule can be found for reaching that output when run-
ning P, and (m, f) is a counterexample input/output pair witness-
ing that angelic(P) does not hold. If the formula is satisfiable for
each m € dom(E) and for each f € E(m), then verification for
angelic schedules succeeds.

5.2 Synthesizing Programs

In our language, it is possible to define a program sketch P? that
admits freedom in the update functions of its components. We now
present a synthesis algorithm for finding update functions in P’
such that the completed program P" is correct with respect to
the correctness condition described above. Our procedure leverages
two verifiers Vg and V, to check correctness properties demonic
and angelic respectively, in order to solve the following synthesis
problem:
3h. demonic(P") A angelic(P™)

This formula is in 3QBF, due to the quantifier alternation 3v3
when considering angelic(P") within the quantification over h.
We solve it by performing counterexample-guided inductive syn-
thesis, using a synthesizer that solves a 1QBF formula and that
communicates with the two verifiers to either validate a candidate
model or to add new counterexamples to consider for inductive syn-
thesis. The solver architecture can be seen in Figure 7.

More precisely, the synthesizer maintains two sets of counterex-
amples, CE1 C dom(E) x S and CE2 C dom(E) x F. The first
set contains pairs of inputs and schedules, and is computed with
counterexamples given by the verifier for demonic schedules. The
second one is a subset of the input/output specifications, and is in
turn computed with counterexamples found by the verifier for an-
gelic schedules. Starting with initial sets CE; and CE», the synthe-
sizer solves at each step the following formula to find a candidate
model:

3h. /\  P"(m,s) € E(m)
(m,s)€CEy
A /\ Js. P"(m,s) = f

(m, f)ECE2
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Figure 7. The synthesizer consists of three communicating
solvers. The two verifiers generate two kinds of counterexamples,
and the synthesizer generates models that satisfy the constraints for
all counterexamples.

If the above formula is unsatisfiable, the partial program cannot be
completed, i.e. synthesis fails. Otherwise, the valuation of / defines
a candidate model that we attempt to verify using verifiers V4 and
Vo . If at least one of the verifiers returns with a counterexample, the
synthesizer attempts to synthesize a new candidate after updating
the counterexample sets CE1 and CE> based on the values returned
by the verifiers. If a candidate model is validated by both verifiers,
we obtain the completed program P" that is correct with respect to
the specification E.

5.3 Querying for Ambiguity Analysis

Given the above procedure for synthesizing programs, we are now
interested in querying spaces of possible models. In particular, we
analyze ambiguity of specifications. If a specification is underspec-
ified, we aim to reduce ambiguity by expanding it. If, on the other
hand, it is overspecified, our goal is to reduce the specification size
without introducing ambiguity.

Computing Aggregate Outcome We now give an iterative algo-
rithm to find aggregate outcome set for a given program p and a
given input m. The aggregate outcome set P[[m]] is the set of out-
comes of P on m over all schedules. We approach the task by first
computing the outcome of P on m under an initial schedule s. We
then enlarge the set of observed outputs Obs by searching for an-
gelic schedules leading the program to produce an output a for-
merly unobserved output. We express containment of the observed
output by unrolling for each value in the Obs set inferred so far,
and solve the following formula at each step:

Js. /\ P(m,s) # f

f€O0Obs

If the above formula is satisfiable, we obtain an output that we add
to the observed output set Obs, and attempt to solve the formula
with the updated set. If it is unsatisfiable, we have obtained all
observable outputs produced by P on input m.

5.3.1 Alternative Models

To ascertain that a given hypothesis is the sole explanation to a
biological phenomenon, a biologist would like to learn whether
there exists a different hypothesis that differs from the first on its
observable outcome on an unperformed experiment, but is correct
on the known experiments. Given a program P; that expresses the
first hypothesis, and a partial program P; that expresses a space of
alternatives, we can state this query formally as:

Hm.Correct(PQh) A Hh.Pgh[[mH # Pi[[m]]

If this query is satisfiable, then there is an alternative program Py
and a new experiment m such that performing the experiment m
will invalidate at least one of P; and P2h. We now describe an
algorithm to solve this query.

Given the hypothesis that the space of experiments M is small,
we approach this task by unrolling the existential quantification
over m. The problem then reduces to synthesizing P5' for a given
mutation mn, such that P [[m]] # Pi[[m]].

PJ{[m]] can differ from P;[[m]] in two distinct ways: (i) It can
either contain an output value not in P; [[m]], or (ii) it can be a strict
subset of P; [[m]]. We give one algorithm for each case.

Case 1. A program PJ that produces an output not seen in
P [[m]] can be found by augmenting the synthesis query described
in Section 5.2 with the constraint P3[[m]] \ Pi[[m]] # 0. The
resulting 3QBF formula is handled using the same mechanism of a
synthesizer communicating with two verifiers to perform inductive
synthesis. The formula that is solved in this case is defined as
following:

3h. Correct(Py) A 3s.Py(m,s) & P[[m]]

This formula is satisfiable if and only if there exists a completion
of program PJ' that decides an output not in P[[m]].

Case 2.  Alternatively, P?* may be found by attempting to syn-
thesize a model that always produces outputs in a strict subset of
Py [[m]]. This is achieved by discarding elements of P;[[m]] one at
a time, to see if such a model can be found. We do not need con-
sider all subsets of P;[[m]], as we only state that P;[[m]] \ {f} is
only an upper bound of the possible outcomes for input m.

3h. Correct(Pf) A
(V sey oy Vs PEGr5) € Prllm]] \ {1})

This formula is satisfiable if and only if there exists a completion
of program PJ such that its observable output set is a strict subset
of observable outputs of P; on input m.

5.3.2 Minimization

In a context where performing experiments is an expensive process,
a researcher may want to obtain a minimal non-ambiguous specifi-
cation that is sufficient for validating a hypothesis. Given a partial
program P’ that expresses a hypothesis, and a specification E that
is non-ambiguous with respect to P?, the task of finding a minimal
non-ambiguous specification E,, is stated as:

—Amb(Ey,, P'Y AN=3E'|E' C Ep, A—Amb(E’, P")

We compute a minimal specification E,, by iteratively restricting
the domain of E for a partial program P’. We achieve this by
considering each element m in the domain of F in order, and
maintaining a set of inputs that were not marked as redundant yet.

At each step, we check whether program P’ can be completed
to a program P" that decides a set of outputs P"[[m]] distinct
from E(m), considering as specification the set of currently nonre-
dundant input values. We leverage the alternative model query de-
scribed in Section 5.3.1 to search for such a model. If synthesis
fails, m is marked as redundant. If synthesis succeeds, then remov-
ing m from the specification leads to ambiguity, and as a result m
should be kept in the final set of pruned inputs. Upon considering
all inputs in the domain of F, a minimal specification is obtained
by removing from the domain of E those inputs that are marked as
redundant.
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Figure 8. (a) The template V PC” we use for our experiments, which is derived as simply the union of connections known to biologists [12]
as informally shown by Figure 1. The “fate” nodes are instrumentation nodes to help read out the outcome. (b) a small fraction of the
specification E (4 rows out of 48), obtained from literature in biology [12].

6. Case Study
6.1 C. elegans vulval development

We attempt to synthesize a model for the vulval precursor cells
(VPCs) that start off identical but through coordination among
themselves and with the Anchor Cell (AC) take on specific fates.
These interactions are informally found in biological literature
from which we develop our template V PC’. The template is
shown in Figure 8(a) (derived from Figure 1.)

From the template we observed that there are nodes with ex-
tremely simplistic on-off behavior. These are LS, the downstream
nodes of the cascade (sem3, let60, and mpk1) and the fate nodes.
While we can introduce holes in them (with expected performance
degradation, yet not being intractable) biologists have a very clear
understanding of these nodes, and so do not want to see complex
behavior in them. Additionally, introducing holes in these nodes
leaves too much freedom to the synthesizer to generate models that
do not have a biological interpretation.

Therefore we run our tool with unknown update functions for
lin12, let23, and Ist. The generated update functions satisfy the
specification and template structure of the program. On the other
hand, lin12, which has very well understood behavior colludes
with the other nodes to give models that are hard to explain to the
biologist. Therefore, we additionally allow the user to specify the
behavior of 1linl12 concretely and synthesize let23 and Ist. Let23
and Ist are indeed the most complex functions (and have the most
complex interconnection dependences). Indeed, in our attempts
prior to synthesis (when designing the verifier) to write the model
by hand, we actually failed. Additionally, the models previously
written did not maintain the requisite lin12 behavior. Therefore,
our synthesizer was solving a problem that had been impossible to
do manually, even after considerable effort.

The specification consists of 48 experimental observations of
the fate outcomes of six VPC cells in sequence. Some of these
observation have non-deterministic outcome fates. A fragment of
the specification is shown in Figure 8(b).

From the template and these experiments, our synthesizer gen-
erated update function solutions to let23 and Ist that were confirmed

by the biologists to be plausible behaviors. The output from the
synthesizer is shown in Figure 9(a).

It is important to note that this is a very significant achieve-
ment. Previously, when we had written down a model for VPCs in
RM [12] it had the following flaws: (1) The previous model did
not satisfy a biological invariant required on the lin12 component,
and all efforts to fix the model failed, (2) RM is too expressive and
therefore there were cases where the model “read the future” which
was hard to interpret biologically, (3) the model lacked readabil-
ity prohibiting debugging, extension, and biological interpretation.
Our synthesized alternative model solves all these. Our first bio-
logically relevant result is therefore that through synthesis we have
revalidated the (experimentally-confirmed) prediction from previ-
ous work, without the vagaries of human modeling.

6.1.1 Specification ambiguity for C. elegans VPC models

Next we analyzed the ambiguity in the specification. The big bi-
ological unknown is the specific node within the cascade let23-
sem5-let60-mpk1 that sends out the inhibitory signal to lin12 and
Ist. We attempted experimented with all four options under our def-
inition of understanding the specification ambiguity:

Alternative models for particular input configuration 44 of the
48 experimental observations are deterministic. We wanted to know
how many models exist if only the 44 outcomes are asserted.
We found that under this relaxed specificaiton all four options of
inhibition coming from any node of the cascade work.

Then using the alternative model query from Section 2.6, we
asked for a model including any one of the 4 remaining outcomes.
The synthesizer eliminates two that have inhibition emanating from
let60 and mpkl1. This was very significant since it validated, and
formally confirmed, the biologist’s intuition that the inhibition
comes from higher up in the cascade. Additionally, it showed that
sem5 (in addition to let23, which was conjectured earlier) was a
valid possibility for the inhibitor.

Input configuration for disambiguating models Next, we at-
tempted to observationally distinguish these two remaining valid
models. Our 48 observations mutate the entire cascade (all nodes
let23 to mpk1) together. We wanted to infer if a finer-grained muta-
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tion exists that distinguishes these two remaining mechanistic hy-
potheses. We expanded the experimental set by enumerating all
possibilities of the cascade nodes (2* possibilities of expansion for
each of the 48 rows) leading to 384 experiments. Our synthesizer
shows that no other mutations exist that would observationally dis-
tinguish these two hypotheses. This saves the biologist significant
effort (336 experiments, each of which could take hours to days to
perform) as they now know that mutation experiments will not suf-
fice to distinguish these explanations and out-of-band experiments
need to be performed.

Inferring the minimal specification We run our minimization
query from Section 2.6 for each of the VPC queries, with supris-
ing results. We infer for the space we are searching over, only 4
experimental observations suffice to yield a unique model. This set
contains a non-deterministic outcomes, and additionally others that
together constrain the system enough to yield the unique model that
is explained by the full 48.

Wet-lab predictions Our exploration demonstrated that (a) let23
is not the only possibility for inhibition, but sem5 is as well, (b)
let60 and mpk1 cannot play that role, (c) the models using let23
and semS5 cannot be distinguished observationally. These suggest a
possible inhibition from sem5, that cannot be distinguished through
mutation experiments, and so other types of experiments would
need to be done.

7. Performance evaluation

We implemented our language as an embedded DSL in Scala.
Our synthesis and analysis framework, also implemented in Scala,
uses the Z3 theorem prover as its underlying constraint solver.
We interface with Z3 through the Scala” library. Our framework
consists of 5K lines of code.

We show performance results for the evaluation of our synthesis
procedure in Figure 10(a). For each example, we present total
execution time, maximum memory usage, number of calls to the
underlying SMT solver Z3, average call time, the structure of holes
in the partial programs, as well as the search space for synthesizing
update functions. VPC1, VPC2, VPC3 and VPC4 are models of
the fate decision in C. elegans vulval precursor cell development
that express each different biological hypotheses about the cells
through their topology. VPC1 and VPC2 are synthesized using a
specification E with domain size 48, while VPC3 and VPC4 are
synthesized using a specification E’ whose domain is restricted
to 44 elements. Sensors is the example introduced in Section 2.
For each example, we report the total running time for synthesis,
the maximum memory usage, number of calls to the underlying
SMT solver Z3, the average time Z3 takes to solve these queries, a
description of holes in the partial program as a sequence of number
of states for each unspecified update function, and the size of the
search space for synthesizing these functions.

In all cases, we find that even for a complicated synthesis prob-
lem such as the VPCs, our synthesizer is very efficient.

In Figure 10(b), we present performance results for the pruning
procedure described in Section 5.3.2. We report the domain size
for the result of the procedure and the initial domain size in the
pruned/total column.

As expected the time for pruning is significantly higher that
just synthesis. This is because multiple synthesis and verification
queries are solved in the process of minimization. But compared
to the amount of time this saves the biologist, i.e., months-years
of work in doing redundant experiments our inference times are
insignificant.

8. Related Work

Inference of biological models While model checking of (man-
ually written) logical biological models has been an active area of
research, we are not aware of work that synthesizes these models.
In contrast, a growing body of literature exists on inference of non-
logical models. The first class of such models uses ordinary dif-
ferential equations (ODEs). An example of ODE model inference
from temporal and spatial data is the work by Aswani et al., who
reduce the amount of prior knowledge needed to infer an accurate
model [4]. Rizk et al.find parameters for ODE models by optimiz-
ing a notion of continuous degree of satisfaction of temporal logic
formulas. Because ODE models are continuous, these techniques
do not appear directly applicable for inference of logical models
based on concurrent systems.

Machine learning has also been used to infer biological models.
Barker et al.use time series data of protein levels to infer whether a
protein is an activator or a suppressor of another protein [5]. Time
series data of concentrations is not available in our setting, so these
approaches do not apply to the inference of our models.

Synthesis algorithms for concurrent systems. Our synthesis al-
gorithm extends the synthesis algorithm for concurrent data struc-
tures [21]. That work showed how to extend the CEGIS algo-
rithm [22] from the sequential setting into the semantics of con-
current programs. The resulting algorithm however did not handle
the richer specification used in this paper (i.e., the angelic correct-
ness). Indeed, new algorithms had to be developed for the specifica-
tions of this paper. The paraglide project developed synthesizers for
concurrent data structures by deriving them from high-level spec-
ifications [24]. It is not clear how these derivation algorithms can
be adapted to synthesis of concurrent systems under input-output
examples such as ours.

Model checking has been applied to model various biological
systems [6-8, 11, 17], and all such modeling efforts have severely
demonstrated the need for a synthesis system. Various other for-
mal method techniques, abstract interpretation [10], petri nets [9],
boolean networks [18], and process algebras [20]. While our tech-
niques are not directly applicable, our success in synthesis for
a model previously expressed in the expressive RM formalism
demonstrates potential for synthesis in these other formalisms as
well.

9. Conclusion

We present a language and algorithms for synthesizing concurrent
models from experiments that perform adversarial mutations on bi-
ological cells and observe the results of the mutation on developed
cells. We synthesize models that reproduce all non-deterministic
outcomes of experiments. This variant of synthesis requires a 3QBF
algorithm, which we design by allowing three solvers to commu-
nicate counterexamples. We also develop algorithms for analyzing
the space of plausible models, ascertaining that a model is the sole
biological explanation whenever possible under given biological
assumptions. We have carried out a significant case study, synthe-
sizing a model that we previously found difficult to produce by
hand.
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